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the parameter conjugate to variations in the length of the compact direction is an effective
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effective tension is always positive, while the ADM tension is negative for large boost

parameter. We also derive two Smarr formulas, one that follows from time translation

invariance, and a second one that holds only in the case of exact translation symmetry in

the compact dimension. Finally, we show that the ‘tension first law’ derived by Traschen

and Fox in the static case has the form of a thermodynamic Gibbs-Duhem relation and

give its extension in the stationary, non-rotating case.
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1. Introduction

The physics of Kaluza-Klein black holes, i.e. black hole spacetimes asymptotic at infinity

to M × S1, has proved to be a surprisingly rich subject, including such phenomena as the

Gregory-Laflamme instability, non-uniform static black strings and the black hole/black

string phase transition (see e.g. the reviews [1, 2]). Research to date has focused primarilly

on the static case. However, it is also of interest to explore the properties of stationary

solutions. Accordingly, in this paper we will study the thermodynamics of stationary

Kaluza-Klein black holes.1

Static Kaluza-Klein black holes are characterized at infinity by the mass M, tension

T and the length L of the compact direction. The physical meaning of the tension follows

from its role in the first law for static S1 Kaluza-Klein black holes [6 – 8]

dM =
κ

8πG
dA + T dL. (1.1)

We see that the tension determines the variation of the mass with varying length of the

compact direction, under the constraint that the horizon area is held fixed. Within the

1Aspects of stationary Kaluza-Klein black holes have been studied in [3, 4]. The thermodynamics of

asymptotically AdS, boosted domain walls have been investigated in reference [5].
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thermodynamic analogy, it appears to be an intensive parameter of the system, like tem-

perature or pressure.

Stationary Kaluza-Klein black holes can carry linear momentum in the compact di-

rection, as well as angular momentum. In this paper, we will be interested in this linear

momentum, which we denote by P, and will assume that the angular momentum vanishes.

The simplest solutions with P 6= 0 are boosted black strings. These are obtained by starting

from the infinite uniform black string, boosting in the z direction and then identifying the

new z coordinate with period L. The boosted black string is then locally, but not globally,

the same as the static uniform black string. Further stationary, but not z-translationally

invariant, solutions may be obtained by giving localized black holes or non-uniform black

strings velocity in the compact direction.

In subsequent sections, we present the following results. We use the Hamiltonian

methods of [9, 10, 8] to establish the first law for stationary, non-rotating Kaluza-Klein

black holes. We also derive two Smarr formulas for these spacetimes. These are exact

relations between the geometric quantities M, κA, vHP and T L, where the quantity

VH is defined below. The first of these formulas holds for the entire class of spacetimes

under consideration. The second Smarr formula holds under the additional assumption of

exact translation invariance in the compact direction. A linear combination of these two

formulas gives the relation between mass and tension for the boosted black string. We

derive each of these Smarr formulas in two ways, first using scaling arguments (as in e.g.

reference [11]) and second using Komar integral relations (as in reference [12]). Finally, we

present a Gibbs-Duhem formula that relates variations in the tension to variations in the

other intensive parameters. This result generalizes the ‘tension first law’ of reference [13].

Our result for the first law resolves a small puzzle related to the boosted black string,

which formed part of the motivation for this work. It was found in reference [3] that the

tension of the boosted black string becomes negative for values of the boost parameter

in excess of a certain critical value, which depends only on the spacetime dimension. If

the physical interpretation of the tension based on equation (1.1) were to continue to hold

in the stationary case, then the energy of the system would decrease with increasing L,

which seems counter-intuitive. This puzzle is resolved by showing that the coefficient of

the dL term in the first law for black holes is an effective tension T̂ . The effective tension

T̂ is equal to the ADM tension in the static case, but includes a contribution from the

momentum in the stationary case. For the boosted black string T̂ is always positive, and

is in fact given by the tension of the unboosted black string with the same horizon radius.

2. Stationary, non-rotating Kaluza-Klein black holes

We consider stationary D-dimensional vacuum black hole spacetimes that are asymptotic

to MD−1 × S1, and assume that the black hole horizon is a bifurcate Killing horizon. In

accordance with our focus on linear momentum around the S1, we take the ADM angular

momentum to vanish. We denote the horizon generating Killing field by la, and assume

that at infinity it has the form

la = T a + vHZa (2.1)

– 2 –
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where T a = (∂/∂t)a and Za = (∂/∂z)a, with z being the coordinate around the S1. The

surface gravity κ of the black hole horizon is defined, as usual, via the relation on the

horizon

∇a(l
blb) = −2κla. (2.2)

The form (2.1) of the horizon generating Killing field at infinity resembles the decom-

position of the horizon generating Killing field for a rotating, asymptotically flat black hole.

In that case, i.e. upon replacing vHZa by ΩHφa, with φ an azimuthal coordinate, one can

show that T a and φa are themselves Killing vectors [14 – 16]. The quantity ΩH can then

be interpreted as the angular velocity of the horizon, and further shown to be constant on

the horizon [14].

Returning to the case of Kaluza-Klein black holes, the situation is quite different.

Already in the static case, solutions exist which are non-uniform in the z direction. In the

stationary case then, it will not generally be the case that T a and Za are Killing vectors.

For localized black holes or non-uniform black strings with velocity around the S1, only

the linear combination la is a Killing vector.

2.1 Two commuting Killing fields

It is nonetheless useful to separately consider the case in which T a = (∂/∂t)a and Za =

(∂/∂z)a are two commuting Killing fields, and that the relation (2.1) holds throughout the

spacetime. The boosted black string falls into this class of spacetimes. If both Za and

T a are Killing fields, then the quantity vH in equation (2.1) may be considered to be the

velocity of the black hole horizon. This identification follows in a similar way to that of ΩH

as the angular velocity in the rotating case (see e.g. the article by Carter in [17]). It follows

from equation (2.2), together with our assumption that T a and Za are commuting Killing

vectors, that in addition to lala = 0 on the horizon, one also has there the orthogonality

relations

laTa = 0, laZa = 0. (2.3)

Given these, one can then show that the metric components on the horizon satisfy the two

relations

(T aZa)
2 = (T aTa) ZbZb, vH = − T aZa

(ZbZb)
(2.4)

The second of these leads to the interpretation of vH as the velocity of the horizon in

the following manner. For rotating black holes, one considers ‘zero angular momentum

observers’ or ZAMO’s. The angular velocity ΩH of the horizon is the limit of a ZAMO’s

angular velocity as it approaches the horizon radius. For a boosted black string, we may

analogously consider observers with zero linear momentum along the string, which we

might be justified in calling ZELMO’s. Let pa = m dxa/dτ be the momentum of a particle

following a geodesic. It’s energy E = −T apa and the z−component of its momentum P =

Zapa are both constants of motion. The condition P = 0 of vanishing linear momentum is

then dz/dt = −gtz/gzz , and we see that on the horizon the coordinate velocity of a ZELMO

is equal to vH .
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3. ADM mass, tension and momentum

We review the formulas for the ADM mass, tension and momentum. Let us write the

spacetime metric near infinity as gab = ηab+γab, where ηab is the D-dimensional Minkowski

metric. The components of γab are assumed to fall-off sufficiently rapidly that the integral

expressions for the mass, tension and momentum are well-defined. In the asymptotic region,

write the spacetime coordinates as xa = (t, z, xi), where i = 1, . . . ,D−2 and the coordinate

z running around the S1 is identified with period L. Let Σ be a spatial slice and ∂Σ∞ its

boundary at spatial infinity. The ADM mass and momentum in the z direction are then

given in asymptotically Cartesian coordinates by the integrals

M =
1

16πG

∫

∂Σ∞

dz dsi

(

−∂iγj
j − ∂iγz

z + ∂jγ
ij
)

(3.1)

P =
1

16πG

∫

∂Σ∞

dz dsi ∂
iγtz (3.2)

where indices are raised and lowered with the asymptotic metric ηab and the area element

dsi is that of a sphere SD−3 at infinity in a slice of constant t and z.

The ADM tension is similarly given by the integral [13, 6, 18]

T = − 1

16πG

∫

∂Σ∞/S1

dsi

(

−∂iγj
j − ∂iγt

t + ∂jγ
ij

)

. (3.3)

Note that in contrast with the ADM mass and momentum, the definition of the tension

does not include an integral in the z-direction. The ADM mass is an integral over the

boundary of a slice of constant t, which includes the direction around the S1. The tension,

on the other hand, is defined [13, 6, 18] by an integral over the boundary of a slice of

constant z. This includes, in principle, an integration over time. However, if one expands

the integrand around spatial infinity, one finds that terms that make non-zero contributions

to the integral are always time independent. Time dependent terms fall-off too rapidly to

contribute. Hence, one can omit the integration over the time direction and work with the

quantity T defined above, which is strictly speaking a ‘tension per unit time’.

We can evaluate these formulas for M, P and T in terms of the asymptotic parameters

of our spacetimes. The spacetimes we consider have topology RD−1 ×S1, the coordinate z

in the compact direction being identified with period L. We can write the metric explicitly

as

ds2 = gttdt2 + 2gtzdtdz + gzzdz2 + 2(gtidtdxi + gzidzdxi) + gijdxidxj (3.4)

where xi with i = 1, . . . D − 2 are the non-compact spatial coordinates. We assume the

following falloff conditions at spatial infinity

gtt ≃ −1 + ct/r
D−4, gzz ≃ 1 + cz/r

D−4, gtz ≃ ctz/r
D−4, (3.5)

and further that the coefficients gti and gzi falloff sufficiently fast that they do not contribute

to any ADM integrals at infinity. The mass, tension [7] and momentum can then be shown,
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using the field equations, to be given in terms of the asymptotic parameters ct, cz and ctz

by

M =
ΩD−3L
16πG

((D − 3)ct − cz), T =
ΩD−3

16πG
(ct − (D − 3)cz), (3.6)

P = −(D − 4)
ΩD−3L
16πG

ctz . (3.7)

4. The boosted black string

The boosted black string serves as a simple analytic vacuum spacetime in which to check the

results we present below for the first law, Smarr and Gibbs-Duhem relations. The boosted

black string metric may be obtained starting from the uniform black string, performing a

boost transformation with parameter β and identifying the new, boosted z coordinate with

period L. This gives

ds2 = −
(

1 − c

rD−4
cosh2 β

)

dt2 +

(

1 +
c

rD−4
sinh2 β

)

dz2 (4.1)

+2
c

rD−4
sinhβ cosh βdzdt +

(

1 − c

rD−4

)−1

dr2 + r2dΩ2
D−3

The horizon, which has topology SD−3 ×S1 is located at rH = c1/(D−4). From the asymp-

totic form of the metric, one finds using the expressions (3.6) and (3.7) that the ADM

mass, tension and momentum are given as in [3] by

M =
ΩD−3L
16πG

rD−4
H ((D − 4) cosh2 β + 1) (4.2)

T =
ΩD−3

16πG
rD−4
H (1 − (D − 4) sinh2 β) (4.3)

P = −ΩD−3L
16πG

rD−4
H (D − 4) sinh β cosh β (4.4)

Note that, as mentioned in the introduction, the tension becomes negative for sinh2 β >

1/(D − 4). We can further compute, as in reference [3], that the horizon area, surface

gravity, and horizon velocity of the boosted black string are given by

A = ΩD−3LrD−3
H cosh β, κ =

D − 4

2rH cosh β
, vH = − sinhβ

cosh β
. (4.5)

5. Gauss’ laws for perturbations

Following the work of [9], we use the Hamiltonian formalism of general relativity to derive

the first law for stationary, non-rotating Kaluza-Klein black holes. Another of our goals

is to derive a ‘first law’ for variations in the tension as in reference [13], for this class of

spacetimes. This requires a slight generalization of the Hamiltonian formalism to accomo-

date evolution of data on timelike surfaces in a spacelike direction. Although, as we discuss

below in section (8), we have not yet succeeded in providing a Hamiltonian derivation of

the ‘tension first law’ in the stationary case, our presentation of the Hamiltonian formalism

will be general enough to provide the necessary tools.

– 5 –



J
H
E
P
0
6
(
2
0
0
7
)
0
2
6

The essence of the method is as follows. In vacuum gravity, suppose one has a black

hole solution with a Killing field. Now consider solutions that are perturbatively close to

this background solution, but are not required to have the original Killing symmetry. The

linearized Einstein constraint equations on a hypersurface can be expressed in the form of a

Gauss’ law (see [10]), relating a boundary integral at infinity to a boundary integral at the

horizon. The physical meaning of this Gauss’ law relation depends on the choice of Killing

field, as well as on the choice of hypersurface. Taking the generator la of a Killing horizon,

together with an appropriate choice of a spacelike hypersurface, yields the usual first law

for variation of the mass [9]. In the case of solutions that are z translation invariant,

choosing the spatial translation Killing vector Za, again with an appropriate choice of a

timelike hypersurface, gives a ‘first law’ for variations in the tension [13].

The formalism then proceeds in the following way. Assume we have a foliation of a

spacetime by a family of hypersurfaces of constant coordinate w. We denote these hyper-

surfaces, both collectively and individually, by V and the unit normal to the hypersurfaces

by wa. With the application to tension in mind, we consider both timelike and spacelike

normals by setting waw
a = ǫ with ǫ = ±1. This slight generalization introduces factors of

ǫ into a number of otherwise standard formulas. The spacetime metric can be written as

gab = ǫwawb + sab (5.1)

where sab, satisfying sa
bwb = 0, is the metric on the hypersurfaces V . As usual, the

dynamical variables in the Hamiltonian formalism are the metric sab and its canonically

conjugate momentum πab = ǫ
√

|s|(Ksab − Kab). Here Kab = sa
c∇cwb is the extrinsic

curvature of a hypersurface V . We consider Hamiltonian evolution along the vector field

W a = (∂/∂w)a, which can be decomposed into its components normal and tangential to

V , according to W a = Nwa + Na where Nawa = 0. As usual, we refer to N and Na

respectively as the lapse function and the shift vector. The gravitational Hamiltonian

density which evolves the system along W a is then given by H = NH + NaHa with

H = −R(D−1) +
ǫ

|s|

(

π2

D − 2
− πabπab

)

(5.2)

Hb = −2Da

(

|s|− 1

2 πab

)

. (5.3)

where R(D−1) is the scalar curvature for the metric sab and the derivative operator Da on

the hypersurface V . One further finds that the quantities H and Ha are simply related to

the normal components of the Einstein tensor,

H = 2ǫ Gabw
awb, Hb = 2ǫ Gacw

asc
b (5.4)

These components of the field equations contain only first derivatives with respect to the

coordinate w, and hence represent constraints on the dynamical fields, sab and πab, on V .

This property is independent of whether the normal direction is timelike, as in the usual

ADM formalism, or spacelike. In vacuum, the equations H = 0 and Hb = 0 are enforced

in the Hamiltonian formalism as the equations of motion of the nondynamical lapse and

– 6 –
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shift variables. These are referred to as the Hamiltonian and momentum constraints, a

terminology we continue to use in the case that the normal wa is spacelike.

Let us now assume that the spacetime metric ḡab is a solution to the vacuum Einstein

equations2 with a Killing vector ξa. We decompose ξa into components normal and tangent

to the hypersurfaces V introduced above, according to ξa = Fwa + βa. Now, let us further

assume that the metric gab = ḡab + δgab is the linear approximation to another solution to

the vacuum Einstein equations. Denote the Hamiltonian data for the background metric

by s̄ab, π̄
ab, the corresponding perturbations to the data by hab = δsab and pab = δπab,

and the linearized Hamiltonian and momentum constraints by δH and δHa. As shown

in [10, 9, 13], the following statement then holds as a consequence of Killing’s equation in

the background metric,

FδH + βaδHa = −D̄aB
a (5.5)

where D̄a is the background covariant derivative operator on the hypersurface and the

vector Ba is given by

Ba = F (D̄ah − D̄bh
ab) − hD̄aF + habD̄bF +

1
√

|s̄|
βb(π̄cdhcds̄

a
b − 2π̄achbc − 2pa

b). (5.6)

Here indices are raised and lowered with the background metric s̄ab. Since the metric

gab solves the vacuum Einstein equations by assumption, we know that δH = δHa = 0.

Therefore, we have the Gauss’ law type statement D̄aB
a = 0. Note that the detailed form

of this relation for the perturbations hab and pab depends on the the Killing vector ξa

and the normal wa to the hypersurface, as well as on the background spacetime metric.

Making different choices for the Killing vector and normal can lead to different relations of

this form. We can now integrate the relation D̄aB
a = 0 over the hypersurface V and use

Stokes theorem to obtain ∫

∂V
dacB

c = 0, (5.7)

where for black hole spacetimes the boundary ∂V of the hypersurface V typically has two

components, one on the horizon and one at infinity.3

6. The first law for stationary, Kaluza-Klein black holes

Following references [9, 8], we now use the Hamiltonian formalism presented in the last

section to derive the first law for stationary, non-rotating Kaluza-Klein black holes. The

first law relates the difference δA in the horizon area between nearby solutions to the

2In this paper we will focus on the case when the background spacetime is vacuum. It is straightforward to

add stress-energy which is described by a Hamiltonian [13]. If the matter Hamiltonian contains constraints–

such as for Maxwell theory–then additional charges appear in the first law. This was worked out for

Einstein-Yang-Mills in [9]. The general case when the background spacetime has stress-energy, such as a

cosmology, was studied earlier in [10]. In this situation, the criterion for a Gauss’ law on perturbations is

that the background have an Integral Constraint Vector.
3Kaluza-Klein bubble spacetimes, which we do not consider here, provide an interesting contrast . There

is no interior horizon, but the rotational Killing field has an axis. Hence to use Stokes theorem, one must

exclude the axis, which introduces an inner boundary.

– 7 –



J
H
E
P
0
6
(
2
0
0
7
)
0
2
6

variations δM, δP and δL in the mass, momentum and length of the compact direction.

As in reference [8], we carry out the calculation first holding the length at infinity, L, fixed,

and then use this result in order to do the calculation with δL 6= 0.

We assume as in section (2) that we have a stationary, non-rotating Kaluza-Klein

black hole solution with metric ḡab and horizon generating Killing field la, which is given

at infinity by la = T a + vHZa. We further assume as in section (5) that the metric

gab = ḡab + δgab is a linear approximation to a solution of the field equations. At this stage,

we assume that δgab is such that δL = 0. Further on, we will relax this assumption.

The derivation of the mass first law is then quite similar to that for rotating black

holes [9]. Consider a spacelike hypersurface V , which intersects the horizon at the bifur-

cation surface and has a unit normal approaching the vector T a at infinity. Choose the

Killing vector in the Gauss’ law construction to be the horizon generator la. Let ∂V∞ and

∂VH denote the boundaries of the hypersurface V at infinity and at the horizon bifurcation

surface. Equation (5.7) then implies that

IH + I∞ = 0 (6.1)

where

IH =

∫

∂VH

dacB
c, I∞ =

∫

∂V∞

dacB
c. (6.2)

Let us first consider the calculation of IH . On the horizon bifurcation surface, the

quantities F and βa vanish, and the boundary integral on the horizon reduces to

IH = −
∫

∂VH

daρ̂c(−h D̄cF + hcb D̄bF ) (6.3)

where ρ̂c is the unit outward pointing normal to the bifurcation surface within V . One can

show that the surface gravity is given by κ = ρ̂c∂cF , and it then follows as in reference [9]

that

IH = 2κ δA (6.4)

Now consider the boundary term at infinity. Many of the terms in (5.6) fall off too

rapidly to make non-zero contributions. In particular, it is straightforward to check that

the DaF terms, as well as those including products of π̄ab with the metric perturbation,

fall off too rapidly as r → ∞ to contribute. Furthermore, it is sufficient to take F ≃ 1 and

βz = vH in this limit. We then arrive at the expression

I∞ =

∫

∂V∞

dz dsi(∂
ih − ∂jh

ij − 2vHpi
z) (6.5)

At this point, we need to note that the formulas (3.1) and (3.3) for the ADM mass,

momentum and tension are written in terms of the variable γab defined by gab = ηab + γab.

In order to interpret the boundary integral (6.5) in terms of variations in M, P and

T , we need to relate the perturbations γab and pab in the Hamiltonian formalism to a

covariant perturbation δγab. It is straightforward to show that to the required order of

– 8 –
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accuracy h = δklδγkl + δγzz and hij ≃ δikδjlδγkl, while a further calculation reveals that

pi
z ≃ −(1/2) ∂iδhzt. We then find that

I∞ =

∫

∂V∞

dai

{

∂ih − ∂jh
ij + vH∂ihzt

}

(6.6)

= −16πG(δM− vHδP) (6.7)

Inserting these results into equation (6.1) then yields the mass first law for boosted black

strings (with the length L at infinity held fixed)4

δM =
κ

8πG
δA + vHδP (6.9)

We see that the momentum appears as an extensive parameter in the first law, while

vH , which for the boosted black string is the horizon velocity, appears as an intensive

parameter. This parallels the way angular momentum enters the first law for rotating

black holes. Equation (6.8) is easily verified for the case of the boosted black string using

the formulas of section (4).

We now generalize the first law (6.9) to include perturbations with δL 6= 0. Our

analysis of the boundary term is based on that in [8] for the static case. The boundary

integral at the horizon in this case remains unchanged and is still given by equation (6.4).

Additional terms, however, occur in the boundary term at infinity. Given the results above,

we can write the boundary term at infinity as

I∞ = 16πG(−δM|δL=0 + vHδP|δL=0 + λδL), (6.10)

where λ remains to be determined. On the other hand, we know the L dependence of M
and P explicitly from the expressions (3.6) and (3.7). This allows us to write

δM = δM|δL=0 +
M
L δL (6.11)

δP = δP|δL=0 +
P
L δL (6.12)

Combining these with equations (6.10), (6.1) and (6.4) then gives

I∞ = 16πG

(

−δM + vHδP + (λ +
M
L − vH

P
L )δL

)

. (6.13)

We can now further appeal to the results of [8] for the case P = 0 and write λ = λ|P=0 +λ′.

We know from [8] that λ|P=0+M/L = T . Putting this together, allows us to rewrite (6.13)

as

I∞ = 16πG

(

−δM + vHδP + (λ′ + T − vH
P
L )δL

)

. (6.14)

4We can also include perturbative stress energy in this relation, in which case the mass first law becomes

δM =
κ

8πG
δA + vHδP +

Z

V

(−δT
a

b nal
b). (6.8)
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We still need to calculate the quantity Î∞ = 16πGλ′δL which includes only the terms

in I∞ that are proportional to both P and δL. It is noted in [8] that in order for the

perturbative Gauss’s law (5.7) to apply with δL 6= 0, one need to make a coordinate

transformation so that δL appears in the metric perturbation, rather than in a change in

the range of coordinates. Following this procedure yields the metric perturbations

hzz ≃ 2
δL
L

(

1 +
cz

rD−4

)

, hzt ≃
δL
L

ctz

rD−4
(6.15)

There are two terms in equation (5.6) that potentially contribute to Î∞ and we accordingly

write Î∞ = Î
(1)
∞ + Î

(2)
∞ . The first of these terms is given by

Î(1)
∞ =

∫

∂V∞

dzdac
−2βbπ̄achab

√

|s̄|
(6.16)

=

∫

∂V∞

dzdai(−2vH π̄izhzz) (6.17)

=

∫

∂V∞

dzdai vH∂iḡtz
2δL
L (6.18)

= 16πG vH P 2δL
L (6.19)

The second term, which requires some care in evaluating, is given by

Î(2)
∞ =

∫

∂V∞

dac
−2βbδπc

b
√

|s̄|
(6.20)

=

∫

∂V∞

dai(−2vHpi
z) (6.21)

=

∫

∂V∞

daivH ∂iḡtz
δL
L (1 − 2 + 1) (6.22)

= 0. (6.23)

where the factor (1 − 2 + 1) in line (6.22) comes about in the following way. We have

piz ≃ δ(
√

sszzKiz) with Kiz ≃ −(1/2)∂igtz. The first 1 comes from the variation of the

volume element
√

s, the −2 comes from the variation of inverse metric component szz

following from equation (6.15), and the final 1 comes from the variation of gtz, also as in

equation (6.15). Putting these results together gives λ′ = 2vHP/L and hence

I∞ = 16πG

(

−δM + vHδP +

(

T +
vHP
L

)

δL
)

. (6.24)

Finally, combining this with IH gives the first law

δM =
κ

8πG
δA + vHδP +

(

T +
vHP
L

)

δL (6.25)

From the δL term, we see that the coefficient of δL is an effective tension given by T̂ =

T + vHP/L. As mentioned in the introduction, the tension of the boosted black string
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becomes negative for sufficiently large boost parameter. It is straightforward to check

that the first law (6.25) is satisfied for variations within the family of boosted black string

solutions in section (4), and also that the effective tension is given by

T̂ =
ΩD−3

16πG
rD−4
H (6.26)

which is equal to the tension of the unboosted black string having the same horizon radius.

7. Smarr formulas, scaling relations and Komar integrals

Smarr formulas are relations between the thermodynamic parameters that hold for black

hole solutions that have exact symmetries. In this section we will derive the Smarr for-

mula for stationary, but non-rotating Kaluza-Klein black holes. We will also derive a

second Smarr-type formula that holds in the case of exact translation invariance in the

z-direction, e.g. for the boosted black string. We present two approaches to deriving these

formulas. The first is based on general scaling relations, which are familiar from classical

thermodynamics, and the second is based on Komar integral relations.

Given the statement of the first law (6.25) for stationary, non-rotating Kaluza-Klein

black holes, the Smarr formula can be derived by making use of a simple scaling argument

(see e,g,,Chowdhury:2006qn). Given any stationary vacuum solution to Einstein’s equa-

tions, we may obtain a one parameter family of solutions by rescaling all the dimensionful

parameters in the given solution in an appropriate way. If a parameter µ has dimensions

(length)n, we replace it with λnµ. The parameters ct, cz and ctz that specify the asymp-

totics of the stationary solution all scale as (length)D−4. If we rescale these accordingly,

and also replace L with λL, then the mass and momentum rescale as

M = λD−3M̄, P = λD−3P̄ (7.1)

where M̄ and P̄ are the mass and momentum of the original solution. Similarly, the area

of the event horizon of the family of spacetimes will be A = λD−2Ā. Now consider how

these quantities change under a small change in λ. We have

dM = (D − 3)Mdλ

λ
, dP = (D − 3)P dλ

λ
, dA = (D − 2)Adλ

λ
, dL = Ldλ

λ
(7.2)

The first law (6.25) must hold in particular for this variation in λ. This will implies that

(D − 3)M = (D − 2)
1

8πG
κA + T̂ L + (D − 3)vHP (7.3)

which is the Smarr formula for stationary, non-rotating Kaluza-Klein black holes. Note

that via the scaling argument, the effective tension T̂ naturally enters the Smarr formula

as well as the first law.

We now derive a second Smarr formula that holds only for solutions, such as the

boosted black string, that have exact translation invariance in the z-direction.5 Note that

5It appears likely that the sboosted black strings can be shown to be the only stationary, non-rotating,

z translational vacuum solutions with non-singular horizons (see reference [19]).
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the mass, momentum and horizon area are all extensive quantities in the compactification

length L and that different values of L give another one parameter family of solutions.

Within this family we have

dM = MdL
L , dP = P dL

L , dA = AdL
L (7.4)

under a small variation in L. For the first law to be satisfied under such variations, we

must have

M =
1

8πG
κA + T̂ L + vHP (7.5)

Because of the simple extensivity of M, P, A and L itself in the length L of the compact

direction, this second Smarr formula takes the form of the usual Euler relation for a ther-

modynamic system, without any additional dimension dependent prefactors. Note that by

taking a linear combination of the two Smarr formulas (7.3) and (7.5), the horizon area

term may be eliminated, giving

M = (D − 3)T̂ L + vHP (7.6)

= (D − 3)T L + (D − 2)vHP (7.7)

For P = 0 this is the well known relation between the mass and tension for a uniform black

string.

The Smarr formulas may also be derived by geometrical means using Komar integral

relations. This is done in reference [12] for the first Smarr formula in the case P = 0.

For a vacuum spacetime with a Killing vector ka, and a hypersurface Σ with boundaries

∂Σ∞ at infinity and ∂ΣH at the black hole horizon, the Komar integral relation implies

the equality I∂Σ∞
= I∂ΣH

where

IS = − 1

16πG

∫

S
dSab∇akb. (7.8)

The first Smarr formula results from taking ka to be the horizon generator la and Σ to

be a spacelike hypersurface with normal dt at infinity. The computation of the horizon

boundary term in this case is by now quite standard (see [20]). The horizon generator

la is null on the horizon and consequently normal to the boundary ∂ΣH . Let qa be the

second null vector orthogonal to ∂ΣH , normalized so that laqa = −1. One then has on the

boundary dSab = 2l[aqb]dA, where dA is the surface area element. It then follows that

I∂ΣH
=

1

8πG
κA (7.9)

where we have made use of the definition (2.2) of the surface gravity. The boundary term

at infinity may be straightforwardly computed using the asymptotic form of the metric

in (3.5) and the expressions (3.6) and (3.7) for the ADM mass, tension and momentum.

One finds

I∂Σ∞
=

ΩD−3L
16πG

(D − 4)ct (7.10)

=
1

D − 2
((D − 3)M−T L) − vHP. (7.11)
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Equating the two boundary integrals correctly reproduces the first Smarr formula (7.3).

The scaling argument that led to the second Smarr formula assumed translation in-

variance in the z-direction, i.e. that Za as well as the horizon generator la = T a +vHZa is a

Killing vector. To give a geometric derivation, we additionally assume, as in section (2.1),

that the Killing vectors T a and Za commute. Let us now take the Killing vector in the

Komar construction to be V a = vHT a + Za, which is orthogonal to the horizon generator

la both at infinity and on the horizon. We take the hypersurface Σ to be timelike, with

normal equal to dz at infinity and proportional to Va at the horizon. The normal to the

horizon within Σ is then proportional to the horizon generator la, and hence the boundary

term at the horizon includes the factor

laVb∇aV b = VaVb∇alb = 0. (7.12)

In the first equality the commutivity of the Killing vectors is used and the second equality

follows from Killing’s equation. Hence, the boundary term at the horizon I∂ΣH
vanishes

for this choice of Killing field and hypersurface. The boundary term at infinity is again

straightforward to compute using the expressions in (3.5), (3.6) and (3.7). We find

I∂Σ∞
= −ΩD−3

16πG
(D − 4)(cz + vHctz) (7.13)

= − 1

D − 2
(M/L − (D − 3)T ) + vHP/L. (7.14)

Equating this with zero then gives the second Smarr formula (7.5).

8. Tension first law and Gibbs-Duhem relation

A second kind of variational formula for static Kaluza-Klein black holes was derived in

reference [13]. This ‘tension first law’ states that

LdT = − 1

8πG
Adκ (8.1)

and holds for perturbations that take a static, translation invariant solution into a nearby

solution that is stationary, but not necessarily translation invariant. It applies, for example,

to the perturbation between the marginally stable uniform black string and the static non-

uniform black string of reference [21]. In this section, we discuss the thermodynamic context

of this formula and conjecture its extension to include P 6= 0.

We regard the quantities M, A, L and P as extensive parameters, while κ, T and vH

are regarded as intensive parameters. For thermodynamic systems, the first law relates

variations in the extensive parameters, as does equation (6.25). In classical thermodynam-

ics a formula relating the variations of the intensive parameters is known as a Gibbs-Duhem

relation. A Gibbs-Duhem relation can be derived from the first law, together with the vari-

ation of an Euler formula, such as equation (7.5). In the present case, variation of the Euler

formula gives

dM =
1

8πG
(κdA + Adκ) + T̂ dL + LdT̂ + vHdP + PdvH (8.2)
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Combining this with the first law then gives the Gibbs-Duhem relation

0 =
1

8πG
Adκ + LdT̂ + PdvH (8.3)

which reduces to (8.1) for P = 0.

Note, however, that the Euler formula (7.5) holds only for z-translationally invariant

solutions, and hence the result above holds only for perturbations that respect this sym-

metry, i.e. within the boosted black string family of solutions. Equation (8.1) was derived

in [13] via the Hamiltonian perturbation methods of section (5), and does not require that

the perturbations are invariant under z translations. We would like to extend the derivation

of [13] to the stationary non-rotating case, but have not yet accomplished this.

9. Conclusions

We have derived various thermodynamic relations for stationary, non-rotating Kaluza-

Klein black holes. As in reference [8], the derivation of the first law required a careful

application of Hamiltonian perturbation theory techniques. Perhaps the most interesting

aspect of the first law (6.25) is the appearance of the effective tension T̂ which generally

differs from the ADM tension. For the boosted black string, the ADM tension becomes

negative for large boost parameter, while the effective tension remains positive. We note

that the gravitational contribution to the ADM tension was shown to be positive for static

spacetimes in reference [22] using spinorial techniques. It should be interesting to see what

these techniques yield in the stationary case, e.g. do they prove positivity of the effective

tension.

Our results concerning the Smarr formulas in section (7) are also of interest. In par-

ticular, the parallels between the scaling argument and Komar integral relation derivations

are intriguing and can most likely be understood in a more general setting. Finally, we

would like to be able to give a Hamiltonian derivation of the Gibbs-Duhem, or ‘tension

first law’, result in equation (8.3).
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